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ABSTRACT 

The contents of this paper is an extension to a new class, class 4-A to our previous work on square matrices of 

Class – 3.These two classes differ by their general form and algebraic nature. An attempt has been made to search for and 

finally establish a class of (infinite set) of square matrices where in commutative property for matrix multiplication is 

preserved. In addition to this, Eigen values and Eigen vectors of such commutative matrices have dominant role to 

understand salient features of the class under discussion. It is, as shown, the most dominating property that libra values are 

preserved under matrix addition, multiplication, and matrix inversion operation. 

KEYWORDS:  Classes, Libra Value, Commutative Property, Eigen Value 

NOTATION: Class 4 – A, CJ4 – A ((n x n, L(A) = P), ZL*, CJ4 – A((n x n, L(A) = 3P + K), P4** 

• ZL * – A class of square matrices for which Libra Value is Zero. 

• P4** -- A property associated with the sum of all the entries of any row and any column and sum of all the entries 

of Non- leading diagonal. 

• P and K are real values. 

1. INTRODUCTION 

It has always remained our continued efforts in quest of an infinite class of matrices such that any two member 

matrices exhibit commutative property for matrix multiplication and finally we settle down in agreement to commutatively. 

We have classified square matrices in 5 broad classes. Each class is an infinite one with a dominating property either in 

sum of all the elements in any row or any column and both. Again to this we add a constraint that involves all the entries of 

either leading diagonal or non-leading diagonal or both. Classes are in correspondence to the property.  

We have introduced an infinite class; we call it class 4 of square matrices which satisfy property P4, it possesses 

the property that the algebraic sum of each of its row, each of its column, and all entries of non-leading diagonal elements 

remains a fixed real constant. This constant, as mentioned in above cases, is called the Libra value of the matrix. 

These matrices show remarkable properties in connection to algebraic structure of matrices. As a part of this class 

CJ4-A (n x n, L (A) = p), The members of the class CCJ4-A follow commutative property for matrix multiplication. It is 
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this class which gets wide open, entries to the infinite classes observing commutative property for multiplication.                        

In context to Eigen values and Eigen vectors of the matrices of this class, we have universality for all the member matrices. 

Also, their inverses do not deviate far away from this property and show fair closeness to this nature. Symmetric matrices 

as a sub –class to this set, add much to the existing properties.  

On introducing these two infinite classes of square matrices, we now focus on class 4-A. 

An n x n square matrix is said to be of the class 4A if it possesses the property that the algebraic sum of each of its 

row, each of its column, and all entries of non-leading diagonal elements remains a fixed real constant. This constant,                 

as mentioned in above cases, is called the Libra value of the matrix. 

One easier form of order n x n matrix of class 4A we shall follow in the notes to follow is, 

A = 

��
��
�� ��� ��� . .��� ��� . .. .��	�	�� − ∑��	��

. .��	�	�� − ∑����
. .. .. .

��	�	���	�	�. .��	�	�	�� − ∑���	��

� − �∑��	��� − �∑��	��. .� − �∑��	�	��−� − 1�� + ∑∑��	���
��
��	                                                             (1) 

All entries are real values. The subscripts ‘i and j’ run over summation notation from 1 to (n-1)  

The same real constant, found on adding either all the entries of any row or any column or all the entries of                

non-leading diagonal, is known as Libra value and it is denoted as L(A) = p; p	∈ � 

There are n row equations; and n column equations, and one equation showing the constant sum of non-leading 

diagonal entries. Number of linearly independent equations are [n + n +1] -1 = 2n.  

From n x n = n2 entries in the given matrix of order n x n, 2n entries are basic variables and this implies that we 

have a free choice of n2 – 2n = n(n-2) entries. An important point is that from n entries of non-leading diagonal, except the 

first and the last entry any other entry cannot be a free choice. This logic helps construct a n x n square matrix of class 4-A 

with above constraints.  

The matrix given by (1) above represents a general form of matrices of class 4A; we denote it symbolically as 

follows. 

A ∈ ��4�	(n x n, L (A) = p) 

We consider particular cases for n = 3 and 4. 

For n= 3, there is a choice of 3 arbitrary elements denoted here as a, b, and c. 

A =  ! " � − � + "�# −� + 2� + " + #� 2� − 2� + 2# + "�� − � + #� 2� − 2� + 2" − #� −� + 3� + 2" + 2#�& ∈ ��4�(n x n, L (A) = p)                            (2) 

Three elements viz. a, b, and c are arbitrary real values while the other elements are controlled by the Libra value 

constraint (L (A) = p) 
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E.G. A= ' 	2 3 −1	5 8 −9−3 −7 14, ∈ ��4�(3x3, L (A) = 4) 

For n= 4, there is a choice of 8 [= n2 – 2n for n = 4] arbitrary elements. 

A= - 	3	2−4	8
	−2	3	1	7

	5	−3	0	7
	3	7	12	−13/ ∈ ��4�(4x4, L (A) = 9) 

1.1 Special Cases, Determinant, and the class ZL  

In this section we discuss special form of matrices of class-4A and identify algebraic property. As a special case to 

the libra value L (A) = p = 0, we discuss a special class ZL. 

(a) General Form and Determinant Value 

We consider the general form square matrices of class 4A of order 3 x3. 

A =  ! 0 � − � + "�1 −� + 2� + " + #� 2� − 2� + 2# + "�� − � + #� 2� − 2� + 2" − #� −� + 3� + 2" + 2#�& ∈ ��4�(n x n, L (A) = p)                             (2) 

Where a, b, c, and p are real values. We mention here some important properties.  

Det. A=|A| = p [(p-3a)2 + 3(a-b)(c-a)]                                                                                                                     (3) 

Det. |A|= |A|= 0 has one or more cases  

(1) p = 0 (2) p=3a and a = b (3)p = 3a and a=c 

In the case (2) and (3) the matrix A will have linearly dependent row vectors forcing |A|= 0 

(b) Zero Libra Class Z L 

Matrices of class 4A for which |A|= 0, i.e. singular matrices, form a sub-class of class 4-A. 

This class is denoted as Z L. In fact ZL = ��4�(3 x 3, L(A) = p=0) ⊂	��4�(3 x 3, L(A) = p); p	∈R 

For p = 0, we have the general form of class 4-A matrix as follows. 

A = - � " −� + "�# 2� + " + #� −2� + " + 2#�−� + #� −2� + 2" + #� 3� + 2" + 2#�/ ∈ 34	 ⊂ ��4�(3 x 3, L(A) = p = 0)                                  (4) 

and clearly |A|= 0 

In the above example, we take a= 3, b = -4, and c = 1 

E.G. A =' 	3 −4 	1	1 	3 −4−4 	1 	3 , ∈ 34	 ⊂ ��4�(3 x 3, L(A) = p = 0) and hence |A| = 0 

(c) Identity Matrix and Null Matrix: 

We consider the general form of class 4A matrices given by the relation (2) 
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For a = 1, b = 0, c = 0, and p = 1 

We have an identity matrix; denoted as I3 x 3 = '5 6 66 5 66 6 5, ∈ ��4�(3 x3, L (I) = 1 

Identity matrices are always of class 4A and has its Libra value = 1. 

I  n x n ∈ ��4�(3 x3, L(I) = 1) 

For a, b, c and p = 0; in the general formwe have a null matrix denoted as 0. 

0 = '6 6 66 6 66 6 6, ∈ ��4�(3 x 3, L(0) = 0). 

We conclude that 0	∈ Z L 

2. STRUCTURAL ALGEBRAIC PROPERTIES OF CLASS 4A 

In this section we introduce fundamental operations on the member matrices of class 4A 

As we have defined CJ4A = {A | n x n, L(A) = p; p ∈ �	} where A = (a i j ) for all i and j from N. 

2.1 Three Basic Criteria 

We have, on the members of class 4A, three fundamental criteria and the entire structure will gradually be 

mounted on it. We develop general notations for the members of class 4A. 

Let A, B, and C be the member matrices of class 4A and α be a real constant. 

Let A ∈ ��4�	(n x n, L (A) = P1), B ∈ ��4�	(n x n, L (B) = P2), and C ∈ ��4�	(n x n, L (C) = P3) where P1, P2, 

and P3 are their libra values; which are real constants. 

Let A = (a i j), B = (b i j), and C = (c i j) for all i and j ∈ N  

2.1(a) Equality 

Two matrices A = B ↔ a i j = b i j for all i and j ∈ N; in this case L(A) = L(B) 

It is very important to note that equality of libra values does not necessarily imply equality of matrices. 

2.1(b) Addition 

Two matrices of same order of the class 4A can be added. The resultant matrix found on addition is also a matrix 

of the same class. 

If A ∈ ��4�	(n x n, L (A) = P1), B ∈ ��4�	(n x n, L (B) = P2) then their addition denoted as A+ B = C (say) is a 

matrix derived as A + B = C =(c i j = a i j + bi j |	(n x n, L (A + B) = L(C) = P1 + P2)  

for all i and j ∈ N. The important property is L(A) + L(B) = L(C) 

2.1(c) Multiplication by a Scalar 

Let α ∈ R, then for A= (a i j) ∈ ��4�	(n x n, L (A) = P1) = We denote multiplication of A by a scalar α by αA and 

define it as αA = (α a i j) for all i, and j ∈ N 
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This property helps us derive two important notion widely useful in matrix algebra. 

For α = -1, we have -1A = -A [which is the additive inverse matrix of the matrix A] 

and for α = 0 , 0A = 0 = Null matrix. 

3. GROUP OF MATRICES 

With the definition of the special class- i.e. class 4A and above mentioned three criteria (2.1) l we are now well 

equipped to develop more results. 

Theorem 1 

Prove that the set defined by CJ4A = {A| n x n, L(A) = p; p ∈ 8	} where A = (a i j ) for all i and j from N is a 

commutative group.  

Proof: 

We consider the above set CJ4A = {A| n x n, L(A) = p; p ∈ �	} where A = (a i j ) for all i and j from N. 

We define operation addition (+) on the members of the set.  

 

For A ∈ ��4�	(n x n, L (A) = P1), B ∈ ��4�	(n x n, L (B) = P2) then their addition denoted as A+ B = C (say) is a 

matrix derived as A + B = C =( c i j = a i j + bi j |	(n x n, L (A + B) = L(C) = P1 + P2) A, and B ∈	CJ4A, A+ B ∈	CJ4A = { C| n 

x n, L( C ) = P1 + P2 = P3 ; P3 ∈ �	} 
Addition of matrices on members of class 4A is a binary operation. In addition to this, we have one more 

property. L(C) = L (A) + L (B) 

3.1. Associative Property for Addition 

Let A = (aij) ∈ ��4�	(n x n, L (A) = P1), B= (bij) ∈ ��4�	(n x n, L (B) = P2),  

and C = (cij) ∈ ��4�	(n x n, L (C) = P3) where P1, P2, and P3 are their libra values; which are real constants and             

a i j, b i j, and c i j are real numbers. 

As associative property holds true on the set of real numbers we have 

a i j + (b i j + c i j ) = (a i j + b i j ) + c i j  

i.e. For the three matrices of the same class -4A and of the same order we have  

A + (B + C) = (A + B) + C An associative law for matrix addition holds true for the members of Class 4A 

3.2 Existence of Identity Element 

For A ∈	CJ4A, as established above, Ǝ a null matrix, 0 ∈	CJ4A [Both A and 0 having the same order] 

϶ A + 0 = 0 + A = A. This null matrix (= 0) is called an identity matrix for the binary operation + on the members 

of the set CJ4A. 
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3.3 Existence of Additive Inverse 

For A ∈	CJ4A, as established above Ǝ a matrix –A ∈	CJ4A ϶ A + (-A) = 0 = - A + A 

The matrices A and –A are additive inverses of each other. 

With these properties on hand along with the binary operation establish that (CJ4A, +) is a group. 

3.4 Abelian Group 

We now check the members of the group for commutative property for the binary operation ‘+’. 

For A, B ∈	CJ4A, by definition, A + B = (a i j ) + (b i j ) = (a i j + b i j ) = (b i j + a i j ) = (b i j ) + (a i j )= B +A 

[As a i j, and b i j are real values satisfying commutative property for addition.] 

In addition to this we note that L (A) + L (B) = L (B) + L (A) 

This in turn implies that (CJ4A, +) is a commutative group / an Abelian group. 

At this stage it is important to note that and on the parallel arguments it can be established that the class ZL is also 

a commutative group under matrix addition. 

4.0 SPECIAL ILLUSTRATION AND PROPERTIES 

We cite here a special example of the above form 

A = ' � − 9 � + 9 � + 9� + 29 � � − 9� � � + 9, ∈ ��4�	(3x3, L(A) = 3p +k) where p and k ∈R                                                     (4) 

We cite here some important properties of the above matrix. 

(a) |A|= -2k2(3p+k); |A|= 0 only if k = 0 

[k = 0 ⟹	the	matrix	A	is	a	scalar	matrix	with	all	constant	entries.	∴	|A|	=	0	⟹	3p	=	0	and	so	
p	=	0.	this	in	turn	⟹	LA�	=	3p	+	k	=	0.	Again	it	implies	that	A	∈ 34	]  

(b) Eigen Values are 3p+k, k, and -2k 

Corresponding Eigen Vectors are (1, 1, 1)/ , (0, -1, 1)/ , and (-1, 1, 0)/  

[It is rather important to note here that we have already proved in our previous paper on the matrices of class 3A, 

that in any classified square matrix, the ‘Libra Value’ is one of the Eigen Value. With information and Eigen values 

properties associated with the entries of the matrix, the remaining Eigen values can be traced and in turn it helps us find 

Eigen vectors also.] 

(c) Now we find the inverse matrix of the non-singular matrix of class 4A. 

If k and (3p+k) ≠0 then |A| ≠ 0 and hence 

A—1 =	 5TUVWT� ��
�� −V VWTX VWTXXV + T VWTX − YVWTX−V −V XV + T��

�� ∈ ��4�(3x3, L(A) =1/( 3p +k)) 
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The given matrix A and its inverse both are members of the same class—i.e. ��4�(3x3) 

Recalling the libra value property and a few calculations, we have Eigen values for the matrix A-1. 

Eigen Values are 1/(3p+k) 1/k 1/-2k 

Corresponding eigen Vectors are (1 1 1)/ (0 -1 1)/ (-1 1 0)/ 

4.1 Commutative Property 

The most important and long awaited classical property—commutative property for matrix multiplication is found 

in one of the typical subset of class 4A. 

A typical subset of class4A [ and there are some more also] is such that their member matrices obey this 

additional property on the top that they form an algebraic structure ‘ Ring’; the structure, at this point, is a commutative 

ring. 

The general format is A = ' � − 9 � + 9 � + 9� + 29 � � − 9� � � + 9,  
This structure of square matrices for real values of ‘p’ and ‘k’ forms an infinite sub-class of class 4A . 

We denote this by ‘C1J4A’  

i.e. C1J4A ⊂ Z[\](3x3, L(A) = 3p +k) 

Theorem 2: 

Statement: Matrices of class C1J4A satisfy commutative property for matrix multiplication. Also deduce the 

corresponding libra value condition. 

Proof: Let us consider two member matrices A and B of the class C1J4A 

Let A = ' �1 − 91 �1 + 91 �1 + 91�1 + 291 �1 �1 − 91�1 �1 �1 + 91, ∈ ��4�(3x3, L(A) = 3p1 +k1) where p1 and k1∈ R 

and 

Let B = ' �2 − 92 �2 + 92 �2 + 92�2 + 292 �2 �2 − 92�2 �2 �2 + 92, ∈ ��4�(3x3, L(B) = 3p2 +k2) where p2 and k2 ∈ R 

Here both the matrices A and B are conformable for matrix multiplication and we take their product. 

Taking product AB and BA,  

We have AB =  

'3�1�2 + �192 + 91�2 + 39192 3�1�2 + �192 + 91�2 − 9192 3�1�2 + �192 + 91�2 − 91923�1�2 + �192 + 91�2 − 29192 3�1�2 + �192 + 91�2 + 29192 3�1�2 + �192 + 91�2 + 91923�1�2 + �192 + 91�2 3�1�2 + �192 + 91�2 3�1�2 + �192 + 91�2 + 9192,	      (5) 

The same result is found on taking BA. 
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 ∴ ]^ = ^]                                                                                                                                                              (6) 

[This can be, in detail, checked in the annexure -1.] 

Also it is note-worthy that for the libra value relation of the product matrices AB and BA, if conformable, then 

L (AB) = L(A)L(B) =(3p1 + k1) (3p2 + k2) = 9p1p2+ 3(p1k2 +p2k1) +k1k2 

 = L (B) L (A) = (3p2 + k2) (3p1 + k1) =9p1p2+ 3(p1k2 +p2k1) +k1k2 = L (BA) 

We conclude that L (AB) = L (BA)  

[Comment: If two matrices are conformable for multiplication then AB is defined and  

L (AB) = L(A) L(B). If both are of the same order then L (AB) = L (BA) 

We note some important points on the libra values.  

If L (AB) = L (A). L (B) = L (P) L (Q) =L(PQ) 

*1 The product matrix AB may or may not be equal to the product matrix PQ if they exist. 

*2 All L (A), L(B), L(P), and L(Q) may be different real values.  

e.g. L(A) = 4, L(B) = 6, L(P) = 3, and L(Q) = 8 and both AB and PQ do not exist.] 

4.2 Commutative Property – Symmetric and Anti-Symmetric Matrices 

At this stage, we denote two special forms – Symmetric and Anti-symmetric matrices of class 4A. 

Symmetric Form: There are many symmetric forms and anti-symmetric forms of square matrices of class 4A. 

They are denoted as CJS4A (n x n, L(A)= 3p+k) and CJA 4A(n x n, L(a)= 3p+k) where p and k are real constants.  

E.G. A = '� + 9 � + _ � −_� +_ � + 2_ + 9 � − 3_� −_ � − 3_ � + 4_ + 9, ∈ Z[`	\](3 x 3, L(A) = 3p +k) where p and k ∈ �	                  (7) 

This is a symmetric matrix of class 4A 

In fact, CJS 4A (n x n, L (A) = 3p + k)	⊂ ��4�(n x n, L(A) = 3p +k)   

E.G. For p = 3, k = 1, and m = --2 

A = '4 1 	51 0 	95 9 −4, ∈ ��a	4�(3 x 3, L(A) = 10) 

We cite here one of the general forms of anti-symmetric form of matrices of class 4A. 

B = '� + 9 � + _ � −_� −_ � + 9 � + _� −_ � −_ � + 9 , ∈ ���	4�(3 x 3, L (B) = 3p +k) where p and k are real constants                         (8) 

In fact, CJA 4A (n x n, L (A) = 3p + k) ⊂ Z[\](n x n, L (A) = 3p +k)  

E.G. For p = 3, k = 1, and m = - 2 
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B = '4 1 55 4 15 5 4, ∈ ���	4�(3 x 3, L(B) = 10 ) 

Theorem 3 

Statement: Matrices of these two classes viz. Z[`	\](3 x 3, L (A) = 3p +k) and 

CJA 4A (n x n, L (A) = 3p + k) observe commutative property for ‘matrix multiplication ‘. 

Proof 

Part1 

Let A ∈ ��a	4�	(n x n, L(A) = 3p1 + k1) and B ∈ ��a	4�(n x n, L(B) = 3p2 +k2)                                                (9) 

Let A = '�� + 9� �� +_� �� −_��� +_� �� + 2_� + 9� �� − 3_��� −_� �� − 3_� �� + 4_� + 9�, ∈ Z[`	\](3 x 3, L (A) = 3V5 + T5) 

and B = ' �� + 9� �� +_� �� −_��� +_� �� + 2_� + 9� �� − 3_��� −_� �� − 3_� �� + 4_� + 9�, ∈ Z[`	\](3 x 3, L (A) = 3	VX + TX) 
Both are square matrices and conformable for matrix multiplication. 

We find both AB and BA; the result is as follows; where the result in the first bracket, carries three entries 

separated by comma sign are the three terms of the first row of the resultant matrix AB. In the same way the other entries 

can be considered. 

In the same way we have considered the product BA and find the same result. 

AB=  

 = BA 

[For satisfying detail refer to annexure-2.] 

In addition to this, we have an important property related to their libra value’ 

L (AB) = L (BA) = L (A) L (B) 

This proves result of part-1.[For symmetric matrices of class Z[`	\](3 x 3, L (A) = 3p +k) ]  

Part 2 

In this section we work on the set of anti-symmetric matrices of class 4a. The class is 

CJA 4A (n x n, L (A) = 3p + k). For the two matrices A ∈ ���	4�(n x n, L (A) = 3p1 + k1) and B ∈ ���	4�(n x 

n, L(B) = 3p2 +k2)                                                                                                                                                                (10) 
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we have to show that AB = BA 

Let A = ' �� + 9� �� +	_� �� −	_��� −	_� �� + 9� �� +	_��� −	_� �� −	_� �� + 9� , ∈ ���	4�(3 x 3, L(A) = 3��+ 9�) 

and B = ' �� + 9� �� +	_� �� −	_��� −	_� �� + 9� �� +	_��� −	_� �� −	_� �� + 9� , ∈ ���	4�(3 x 3, L(B) = 3��+ 9�)  
Both A and B are anti-symmetric square matrices of class CJA4A (3 x 3, L(A1) = 3p + k) 

Then, as we worked in part 1for symmetric matrices of class CJS4A (3 x 3, L(A) = 3p + k), we follow the same 

routine for anti-symmetric matrices also. 

AB=  

 = BA. We have the result AB = BA                                                                                                                      (11) 

We find both AB and BA; the result is as above; where the result in the first bracket, carries three entries 

separated by comma sign are the three terms of the first row of the resultant matrix AB. In the same way the other entries 

can be considered. 

In the same way we have considered the product BA and find the same result. 

[For satisfying detail refer to annexure-3.] 

In addition to this, we have an important property related to their libra value’ 

L (AB) = L (BA) = L (A) L (B)                                                                                                                             (12) 

This proves result of part-2.[For anti-symmetric matrices of class Z[]	\](3 x 3, L(A) = 3p +k) ]  

5.0 LINEAR TRANSFORMATION AND ELEMENTARY OPERATIONS  ON MATRICES OF       

CLASS- 4A 

At this point we feel that before discussing some basic transformations defining concepts of all the classifications 

should be given at glance. 

A Square Matrix for Which 

(1) Sum of each column entries remains constant and same for all the columns fall in class1 denoted as          

CJ1(n x n, L(A) =p); where L(A) is called the Libra value which shows the constant value. 

(2) Sum of each row entries remains constant and same for all the rows fall in class2 denoted as                      

CJ2(n x n, L(A) =p); where L(A) is called the Libra value which shows the constant value. 
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(3) Sum of each column entries and row entries remains constant and same fall in class3 denoted as                            

CJ3(n x n, L(A) =p); where L(A) is called the Libra value which shows the constant value. 

(4) Sum of each column entries, row entries, and entries of non-leading diagonal remains constant and same fall in 

class 4A denoted as CJ4A(n x n, L(A) =p); where L(A) is called the Libra value which shows the constant value. This class 

possesses many infinite sub- classes such that the member matrices possess commutative property for multiplication.                

We have shown three of such classes.  

(5) Sum of each column entries, row entries, and entries of leading diagonal remains constant and Same fall in 

class 4B denoted as CJ4B(n x n, L(A) =p); where L(A) is called the Libra value which shows the constant value. This class 

possesses many sub-classes and their member matrices follow commutative property for matrix multiplication. 

(6) Sum of each column, row, leading and non-leading diagonal entries; i.e. all the properties inherent in both 

classes CJ4A, and CJ4B fall in this class denoted as CJ5 (NXN, L(A) = p) 

Now we address certain properties for the square matrices of order 3 x3. All these properties can be extended to 

the matrices of order n x n. 

5.1 LINEAR TRANSFORMATION  

In this unit we discuss elementary row operations and a linear transformation. 

5.1(a) We define a linear transformation T as follows. 

                                                                                                                                                  (13) 

We consider square matrices of order nxn but show the cases for matrices of order 3x3 and the same routine can 

be extended to a square matrix of any order. 

For A (=a i j )	∈	CJ4A , T(ai j) = (a j (4—i)) for all i and j = 1 to 3. 

then T(A) ∈ CJ4B. Let T (A) = B (say) 

This transformation changes matrices of class 4A to the matrices of class 4B. 

Illustration: 

Let A = '4 1 	51 0 	95 9 −4, ∈ ��4�(3 x 3, L(A) = 10) 

We have T (A) = B= ' 	5 1 	4	9 0 	1−4 9 	5, ∈ ��4b(3 x 3, L(A) = 10)  

Some important deductions: 

*1 This transformation interchanges the first column with the third column and vice-versa. 

*2 The middle column remains unchanged and hence in accordance with the above property, we conclude that L 

(A) = L (T (A)). 

i.e. This linear transformation does not change the libra values on this transformation. 
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*3 T (T (a i j) = T2 (a i j ) ∈	CJ4A and so on for successive applications. 

5.1(b) Elementary row /column transformation of the first and third row/column converts a given matrix of class4A to the 

one of class4B and vice-versa.  

                                                                                                                      (14) 

 

In the case of a matrix of order 4x4 of class 4A, we need simply interchange R1 with R4 and  

R2 with R3 

                                                                            (15) 

Illustration: Let us consider a matrix A of order 4 x4. 

A= - 	3	2−4	8
	−2	3	1	7

	5	−3	0	7
	3	7	12	−13/ ∈ ��4�(4x4, L(A) = 9) 

Applying the above mentioned transformation; we have the resultant matrix as follows. 

A= - 	8	−4	2	3
	7	1	3	−2

	7	0	−3	5
	−13	12	7	3 / ∈ ��4b(4x4, L(A) = 9) 

The important point is about preservation of libra value. 

5.1(c) A very important one which lowers down the class; i.e. from class CJ4A it converts to the matrices of class 3 is 

depicted as follows. Elementary row /column transformation of the first and second row/column or the second and the third 

row/column converts a given matrix of class4A to the one of class 3 and vice-versa. 

                                                                                         (16) 

 

We add an important outcome that from matrix of class3, by this route, it is not possible to reach matrix of 

class4A. i.e. The transformation is not reversible. 

CONCLUSIONS 

In addition to our article on commutative matrices [Ref. 6] this article is one of the breakthrough in identifying the 

infinite classes of square matrices possessing commutative property briefly described at three different places as the topics 

advance as should be. For classical minded friends the relevant proof for each unit is given in the annexure. It also adds 

Libra value property associated with Eigen value and Eigen vector. The content leads to on establishing all the necessary 

algebraic property necessary for the algebraic structure of a ‘Field’ 
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Also the problem is an open ended one which can be attended by adding the same Libra value property on the 

entries of leading diagonal and also incorporating both these properties. Such symmetrical structures on the square matrices 

of order n x n ,it can be applicable to the area of organic chemistry in which symmetrical structure of C6H6 (benzene) plays 

in important role. 

VISION  

The next in this sequence we are about on completion of algebraic structure of square matrices of 4B. 

We have identified many properties in these classes which are, we think, special attributes to these classes. . 
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APPENDICES 

Annexure: We, as mentioned during the proceedings of the core units of this paper, give the necessary algebraic work that 

will allow us to claim the commutative property in the cases of different sub-classes of the major class4A. 

Annexture-1 

In annexure -1, we have shown the resulting terms of each step of the product AB and BA]We consider the 

matrices A and B given by relation (4) and both being conformable for matrix multiplication we continue to 

perform their product. 

A = ' �1 − 91 �1 + 91 �1 + 91�1 + 291 �1 �1 − 91�1 �1 �1 + 91, and B = ' �2 − 92 �2 + 92 �2 + 92�2 + 292 �2 �2 − 92�2 �2 �2 + 92, 
Their product denoted as AB is as follows. 
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AB = AB 

='3�1�2 + �192 + 91�2 + 39192 3�1�2 + �192 + 91�2 − 9192 3�1�2 + �192 + 91�2 − 91923�1�2 + �192 + 91�2 − 29192 3�1�2 + �192 + 91�2 + 29192 3�1�2 + �192 + 91�2 + 91923�1�2 + �192 + 91�2 3�1�2 + �192 + 91�2 3�1�2 + �192 + 91�2 + 9192,			(12) 

BA =  

BA='3�1�2 + �192 + 91�2 + 39192 3�1�2 + �192 + 91�2 − 9192 3�1�2 + �192 + 91�2 − 91923�1�2 + �192 + 91�2 − 29192 3�1�2 + �192 + 91�2 + 29192 3�1�2 + �192 + 91�2 + 91923�1�2 + �192 + 91�2 3�1�2 + �192 + 91�2 3�1�2 + �192 + 91�2 + 9192,	              (13) 

On comparing the results (12) and (13), we conclude that the class of matrices under  

class 4-A preserves commutative property for multiplication of matrices. 

i.e. in general AB = BA 

This helps claim that AB = BA 

Annexture-2 

[In annexure -1, we have shown the resulting terms of each step of the product A1B1 and B1A1.] 

In this annexure we consider two symmetric matrices of class 4-A. [form given by relation (11)] 

Let A1 = ' V5 + T5 V5 +c5 V5 −c5V5 −c5 V5 + T5 V5 +c5V5 +c5 V5 −c5 V5 + T5 , ∈ ��a3, e�� = 3�1 + 91� 

andB1 = ' VX + TX VX +cX VX −cXVX −cX VX + TX VX +cXVX +cX VX −cX VX + TX , ∈ ��a3, e�� = 3�2 + 91� 
These matrices are conformable for matrix multiplication  

Their product AB and BA is given as follows. We have 
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A1B1 =  

A1B1 =' 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 +_192 +_1_2 3�1�2 + �192 + 91�2 − 91_2 − _192 +_1_23�1�2 + �192 + 91�2 − 91_2 −_192 +_1_2 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 + 91�2 + 91_2 + _192 +_1_23�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 ,						(14) 

In the same way we find B1A1. 

B1A1 =  

B1A1 = ' 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 +_192 + _1_2 3�1�2 + �192 + 91�2 − 91_2 −_192 +_1_23�1�2 + �192 + 91�2 − 91_2 −_192 +_1_2 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 + 91�2 + 91_2 +_192 +_1_23�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 3�1�2 + �192 + 91�2 + 9192 − 2_1_2 ,				(15) 

On comparing the results (14) and (15), we conclude that the class of symmetric matrices under  

class 4-A preserves commutative property for multiplication of matrices. 

i.e. in general AB = BA 

 

 




